Author: Collin, Elizabeth

Virtual Talk: Lucina Uddin, University of Miami

Lucina Uddin, PhD

University of Miami

Brain dynamics and flexible behaviors

Tuesday, April 14th from 12-1:15pm EST via Zoom

**Register here for Zoom using your institution/university email address**

Bio: After receiving a Ph.D. in cognitive neuroscience from the psychology department at UCLA in 2006, Dr. Uddin completed a postdoctoral fellowship at the Child Study Center at NYU. For several years she worked as a faculty member in Psychiatry & Behavioral Science at the Stanford School of Medicine. She joined the psychology department at the University of Miami in 2014. Within a cognitive neuroscience framework, Dr. Uddin’s research combines functional connectivity analyses of resting-state functional magnetic resonance imaging data and structural connectivity analyses of diffusion tensor imaging data to examine the organization of large-scale brain networks supporting executive functions. Her current projects focus on understanding dynamic network interactions underlying cognitive inflexibility in neurodevelopmental disorders such as autism. Dr. Uddin’s work has been published in the Journal of Neuroscience, Cerebral Cortex, JAMA Psychiatry, Biological Psychiatry, PNAS, and Nature Reviews Neuroscience. She was awarded the Young Investigator award by the Organization for Human Brain Mapping in 2017.

Abstract: Executive control processes and flexible behaviors rely on the integrity of, and dynamic interactions between, several core large-scale brain networks. The right insular cortex is a critical component of a salience network that is thought to mediate interactions between brain networks involved in externally oriented and internally oriented processes. I will describe studies examining how brain network dynamics support flexible behaviors in typical and atypical development, presenting evidence suggesting a unique role for the dorsal anterior insular from studies of meta- analytic connectivity modeling, dynamic functional connectivity, and structural connectivity. These findings from adults, typically developing children, and children with autism suggest that structural and functional maturation of insular pathways is a critical component of the process by which human brain networks mature to support complex, flexible cognitive processes throughout the lifespan.

Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Virtual Talk: Daniel Ansari, University of Western Ontario

Daniel Ansari, PhD

University of Western Ontario

Wednesday, April 1st from 1:00-2:15 pm EST via Zoom

**Register here for Zoom using your university/institution email address**

Abstract:

Humans share with animals the ability to process numerical quantities in non-symbolic formats (e.g., collections of objects). Unlike other species, however, over cultural history, humans have developed symbolic representations (such as number words and digits) to represent numerical quantities exactly and abstractly. These symbols and their semantic referents form the foundations for higher-level numerical and mathematical skills. It is commonly assumed that symbols for number acquire their meaning by being mapped onto the pre-existing, phylogenetically ancient system for the approximate representation of non-symbolic number over the course of learning and development. In this talk I will challenge this hypothesis for how numerical symbols acquire their meanings (“the symbol grounding problem”). To do so, I will present a series of behavioral and neuroimaging studies with both children and adults that demonstrate that symbolic and non-symbolic processing of number is dissociated at both the behavioral and brain levels of analysis. I will discuss the implications of these data for theories of the origins of numerical symbol processing and its breakdown in children with mathematical learning disorders, such as Developmental Dyscalculia.

Bio: Daniel Ansari received his PhD from University College London in 2003. Presently, Daniel Ansari is a Professor and Canada Research Chair in Developmental Cognitive Neuroscience in the Department of Psychology and the Brain & Mind Institute at the University of Western Ontario in London, Ontario, where he heads the Numerical Cognition Laboratory (www.numericalcognition.org). Ansari and his team explore the developmental trajectory underlying both the typical and atypical development of numerical and mathematical skills, using both behavioral and neuroimaging methods.

Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

BIRC’s Response to the Coronavirus outbreak Update #1 3-7-2020

Dear BIRC community

With the first case of COVID-19 confirmed in Connecticut and many schools, universities, conferences and elder care facilities shutting down in some states, BIRC will follow the guidelines generally recommended by the Centers for Disease Control and Prevention (CDC).

BEFORE YOU OR YOUR PARTICIPANTS COME IN
I am sure you are aware of how to best prevent spreading the virus so I will not repeat here. For more information, please read https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html  But please make sure you confirm that your participants (or you) do not have symptoms before coming in. Please cancel your session 

We are considering relaxing cancellation policy and waiving the fees during this time and we will let you know once we make a decision with CLAS. If this impacts your study budget heavily, please do talk to me (Director of BIRC).

CLEANING
In general, we follow university policy and MRI (Zone 4) gets wiped down with disinfectants and multipurpose cleaning material after each participant and daily; however we will strengthen our wipe down policy and expand it to all areas of the facilities so hard surfaces with frequent contact to users and participants get wiped down once a day. Please make sure you wipe areas after use (and before if you would like) as a courtesy. There are disinfectant wipes in various areas of BIRC. This includes MRI, testing rooms, data room, EEG, mock scanner, TMS etc.

EEG/TMS ETC THAT REQUIRE CLOSE CONTACT WITH PARTICIPANTS
We will continue to operate until further notice. We are currently NOT enforcing gloves or masks. Please make sure you follow the cleaning procedures and keep participants or yourself home if you have symptoms.

We are currently keeping all facilities open. We are not aware of any other neuroimaging facilities being shut down because of COVID-19. We will be in close communications with CLAS Executive Director of Shared Services  and keep you updated of any changes.

Please contact us if you have questions.

IBRAiN Office Hours

IBRAiN fellows hold weekly office hours for the BIRC community to help users with their projects and provide short tutorials. Spring 2020 hours are held virtually Mondays 1:30-4:30p, Tuesdays 12-3p, Wednesdays 9a-12p, Thursdays 2-5p, and Fridays 2-5p. To join an office hour, connect to meeting 646 198 704 on UConn Webex.
For more information about the fellows and office hours, please see https://birc.uconn.edu/ibrain-team/. Collectively, the fellows provide expertise in fMRI analysis using AFNI or FSL, cluster computing, and EEG analysis. If you have a research project that would benefit from IBRAiN involvement beyond office hours, please contact roeland.hancock@uconn.edu.

Talk: David Badre, Brown University

Tuesday, March 3rd from 1:30-3:00 pm in Arjona 307

Abstract:

This talk will describe an on-going line of research in our lab investigating the cognitive and neural systems that support hierarchical cognitive control, or our ability to simultaneously control immediate actions while also holding more abstract, temporally remote goals in mind. Psychologists have long proposed that we have a capacity for hierarchical control, citing its potential contributions to sequential behavior, as well as higher-order planning, reasoning, and abstraction. Despite its importance for cognition, the cognitive and neural mechanisms that support hierarchical control remain unknown. Here I will provide a line of evidence suggesting that this type of complex control partly depends on gating of working memory by cortico-striatal circuits. In this light, I will discuss on-going efforts to develop fMRI methods that can characterize the dimensionality of neural representations in the prefrontal cortex that support complex task control.

Bio:David Badre received his Ph.D. from the Department of Brain and Cognitive Sciences at MIT in 2005. Following a postdoctoral fellowship at the University of California, Berkeley, he joined Brown’s Department of Cognitive, Linguistic, and Psychological Sciences as Assistant Professor in 2008 and was subsequently promoted to Associate Professor in 2014 and then Professor in 2019. He is also an affiliate of the Carney Institute for Brain Science and a trainer in the Neuroscience Graduate Program. His lab at Brown focuses on the cognitive neuroscience of memory and cognitive control with an emphasis on frontal lobe function and organization. Dr. Badre serves on the editorial boards of Psychological Science, Cognitive Science, and Behavioral Neuroscience.  He served as Section Editor covering “Executive Function and Cognitive Control” for Neuropsychologia until 2017. Presently, he serves on the Board of Reviewing Editors for the journal eLife, and he is a standing member of the Cognition and Perception study section of NIH. His research is supported by NINDS and NIMH at the NIH, and through the Office of Naval Research. His work has been recognized by several awards, including an Alfred P. Sloan Foundation Fellowship in Neuroscience, a James S. McDonnell Scholar Award in Understanding Human Cognition, and the Cognitive Neuroscience Society Young Investigator Award. His book on the neuroscience of cognitive control, entitled On Task: How the brain gets things done, will be published in November, 2020 through Princeton University Press.

**Register here for Webex**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Katarzyna Chawarska, Yale University

Tuesday, February 4th from 1:30-3:00 pm in Arjona 307

Abstract:The lecture will address selected facets of social and emotional development during prodromal and early syndromal stages of Autism Spectrum Disorder and their links with later outcomes amongst children with ASD and their siblings. Recent efforts in fetal and neonatal neuroimaging  to understand underlying mechanisms will be briefly mentioned.

Bio: Dr. Katarzyna Chawarska is Emily Fraser Beede Professor of Child Psychiatry, Pediatrics, and Statistics and Data Science and the Director of the Social and Affective Neuroscience of Autism Program and the Yale Autism Center of Excellence Program at the Child Study Center, Yale School of Medicine.  Her research focuses on identifying early markers of core and co-morbid symptoms in children with Autism Spectrum Disorder (ASD) and related conditions.  She has served as the Chair of the Baby Sibling Research Consortium, and a Board member of the International Society for Autism Research. She is a principal investigator on numerous federally and privately funded grants as well as the lead author on multiple publications and book chapters. In her clinical practice, Dr. Chawarska specializes in early diagnosis of ASD as well as developmental follow-up of infants at risk for ASD due to familial, genetic factors, or due to prenatal or perinatal complications such as premature birth.  She is also committed to training of the next generation of clinicians and researchers in the field of developmental disabilities as well as promoting early detection of ASD both nationally and internationally.

**Register here for Webex**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Kimberly Noble, Columbia University

Tuesday, December 3rd from 1:30-3:00 pm in Arjona 307

Abstract: Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Recent work has focused on understanding the neurobiological pathways through which socioeconomic factors shape development. Behavioral evidence suggests that language, memory, social-emotional skills, and executive functions exhibit relatively large differences across socioeconomic lines, and more recent work has found differences in socioeconomic differences in brain structure in the very regions that support these skills. It is likely that socioeconomic factors operate via multiple mechanisms to explain the development of different neural circuits. A theoretical model will be presented whereby differences in the home language environment and family stress likely impact particular brain systems, which in turn support distinct neurocognitive skills. Evidence for the model, as well as ongoing and future work testing aspects of the model, will be discussed. Finally, the question of interventions will be addressed, along with an overview of Baby’s First Years, the first clinical trial of poverty reduction in early childhood.

Bio:Kimberly Noble, MD, PhD, is an Associate Professor of Neuroscience and Education at Teachers College, Columbia University. She received her undergraduate, graduate and medical degrees at the University of Pennsylvania. As a neuroscientist and board-certified pediatrician, she studies how socioeconomic inequality relates to in children’s cognitive and brain development.  Her work examines socioeconomic disparities in cognitive development, as well as brain structure and function, across infancy, childhood and adolescence. She is particularly interested in understanding how early in infancy or toddlerhood such disparities develop; the modifiable environmental differences that account for these disparities; and the ways we might harness this research to inform the design of interventions. She is one of the principal investigators of the Baby’s First Years study: the first clinical trial of poverty reduction to assess the causal impact of income on children’s cognitive, emotional and brain development in the first three years of life. Dr. Noble was elected a Fellow of the Association for Psychological Science, and was awarded a 2017 Association for Psychological Science Janet Taylor Spence Award for Transformative Early Career Contributions. Her work linking family income to brain structure across childhood and adolescence has received worldwide attention in the popular press.

**Register here for Webex**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Talk: Stephanie Jones, Brown University

Brown University

Tuesday, November 5th from 1:30-3:00 pm in Arjona 307

Abstract: EEG and MEG are the leading methods to non-invasively record human neural dynamics with millisecond temporal resolution. However, it can be extremely difficult to infer the underlying cellular and circuit level origins of these macro-scale signals without simultaneous invasive recordings. This limits the translation of EEG/MEG into novel principles of information processing, or into new treatment modalities for neural pathologies. To address this need, we developed the Human Neocortical Neurosolver (HNN: https://hnn.brown.edu), a new user-friendly neural modeling tool designed to help researchers and clinicians interpret human imaging data. In this talk, I will give an overview of this new tool and describe an application to study the origin and meaning of 15-29Hz beta frequency oscillations, known to be important for sensory and motor function. I will also touch on other applications of HNN to study the mechanistic origin of functionally relevant human EEG/MEG and modulation in these signals with non-invasive brain stimulation. In total, HNN provides an unpresented biophysically principled tool to link mechanism to meaning of human EEG/MEG signals.

Bio: Stephanie R. Jones, PhD is Associate Professor in the Department of Neuroscience at Brown University. She received her doctorate in mathematics from Boston University, followed by training in neuroscience and human MEG/EEG at Massachusetts General Hospital. Her research program integrates these disciplines to develop biophysically principled computational neural models that bridge the critical gap between human MEG/EEG brain imaging signals and their underlying cellular and network level generators. Dr. Jones’s group is currently expanding their interdisciplinary program to the field of non-invasive brain stimulation. A primary goal is to translate an understanding of the network mechanism underlying non-invasively measured brain signals into brain stimulation strategies to improve disrupted brain function.

**To view this talk remotely via Webex, please register hereby October 29th**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.

Inspirational Faculty Presentation: Can Neuroscience Democratize Education?

UConn BIRC Director, Fumiko Hoeft, gave one of the “Inspirational Faculty Presentations” at UConn President’s Inauguration on October 4th, 2019. In her talk, she discussed how innovation in neuroscience science can democratize education and practice. Recording of all presentation, including Fumiko Hoeft’s, can now be viewed here.

Talk: Uri Hasson, Princeton University

Uri Hasson, PhD

Princeton University

Tuesday, October 15th from 1:30-3:00 pm in Arjona 307

Abstract: Cognition materializes in an interpersonal space. At present, little is known about the neural substrates that underlie our ability to communicate with other brains in naturalistic settings. In the talk I will introduce novel methodological and analytical tools for characterizing the neural responses during production and comprehension of complex real-life speech. By directly comparing the neural activity timecourses during production and comprehension of the same narrative, we were able to identify areas in which the neural activity is correlated (coupled) across the speaker’s and listener’s brains during communication. Furthermore, the listener brain activity mirrors that of the speaker with a constant delay of three seconds. This mirroring was eliminated when the communication signals were misaligned. Finally, the stronger the speaker- listener coupling the greater listener comprehension. We argue that the observed coupling of production and comprehension-based processes serves as a mechanism by which brains convey information.

Bio: Uri Hasson grew up in Jerusalem. As an undergrad he studied philosophy and cognitive sciences at the Hebrew University. He completed his Ph.D. in Neurobiology at the Weizmann Institute in Israel and was a postdoctoral fellow at NYU before moving to Princeton. He is currently a Professor in the Psychology Department and the Neuroscience Institute at Princeton University. His research program aims to understand the neural basis of face-to-face, brain-to-brain, social interaction, with a focus on verbal communication and storytelling in real-life contexts.

**To view this talk remotely via Webex, please register here by October 8th**

Please email birc@uconn.edu if you are interested in meeting with a speaker. Click here to see the full BIRC Speaker Series schedule and access recordings of past talks.