Facilities and Resources Template

Laboratory: The BIRC facilities include dedicated spaces for functional brain imaging for computing, and image and data analysis. The center thus contains all of the resources necessary for integrated studies of human brain function. It houses all of the research scanners and personnel in one contiguous facility.

MRI: A 3.0 Tesla Siemens Prisma scanner is available for structural and functional MRI scanning, as well as for magnetic resonance spectroscopy (MRS). This system has 80mT/m maximum amplitude gradient hardware, and a slew rate of 200T/m/sec with a 100% duty cycle. It also includes 20- and 32-channel head and 64-channel head/neck receive array coils with parallel imaging capabilities. This system is also equipped with 32-channel spine coil, shoulder coil, hand/wrist coil, foot/ankle coil, knee coil, and 18-channel body coil. The signal quality and operating characteristics of the scanner are routinely monitored using ACR, fBIRN, and dynamic phantoms. The scanner has shown excellent stability over its lifetime.

The scanner has connections for peripheral computers to run stimulus presentation programs (e.g., PsychoPy, E-prime, Presentation), including a hookup such that users can run paradigms from their own laptop computers and response pads to record participant button presses. The scanner allows for audiovisual presentation and has TTL pulses recorded to facilitate synchronization of scanning and experimental paradigms. Visual stimuli are presented on a high definition, color-calibrated 24” BOLDScreen. Auditory presentation and communication are via an Avotec Silent Scan with in- or on-ear transducers, or OptoActive system with fiber optic microphone and active noise cancellation to reduce gradient noise during audio presentation and recording.

Additional systems allow for simultaneous EEG/ERP (256-channel EGI), Eye Tracking (SR Research Eye Link 1000 Plus), and subject monitoring of heart rate, pulse oximetry, and respiration.

Mock MRI: There is also an MR simulator in a dedicated room in the BIRC that allows for training of subjects that might have difficulty staying still in the magnet (such as children) and also for subjects that might suffer from mild claustrophobia. The mock scanner includes equipment for displaying stimuli and for monitoring and providing feedback on head motion via and will be used for orientation to the MRI environment and training and in-scanner tasks.

EEG: The BIRC houses two 256-channel EEG systems from EGI with a full range electrode caps in pediatric and adult sizes. A Net Amps 410 is available for simultaneous EEG/MRI and a Net Amps 400 GTEN system is available for out-of-scanner use. The latter is equiped with a neuromodulation package and software for high density tDCS, tACS, tRNS and tPCS. An EGI Geodesic Photogammetry System (GPS) is available for electrode localization in conjunction with EEG or tDCS studies.

TMS: A MagVentures MagPro X100 with MagOption is available for TMS. This system is capable of generating high duty biphasic and monophasic pulse sequences for single pulse, paired pulse or repetitive stimulation. The system is equipped with flat and 120º butterfly coils, and a liquid-cooled blinded active/sham butterfly coil. Pulse localization on individual anatomy is facilitated by a Localite TMS Navigator system.

Testing and Recording Rooms: There are 3 behavioral testing rooms adjacent to the scanner bays where subjects can be trained and/or tested pre- and post-scanning as well as a sound-attenuated chamber than can be used to record audio stimuli to be used in experiments.

 

Computing: The center houses a high-end data processing lab, featuring 4 high-end Mac Workstations with common software (e.g. Docker, AFNI, FSL, Freesurfer, MATLAB, R). In addition to in-house computing, two high performance computing (HPC) systems are available to UConn faculty, providing access to accelerated GPU and parallel computing. BIRC has purchased one semi-dedicated 32-core processing node for priority access.

High-Performance Computing (HPC) facilities: The University manages HPC systems on the Storrs campus and in Farmington at UConn Health. The systems are optimized for different computational problems, with the Storrs focusing on compute-intensive workloads and the Farmington facility on data-intensive workloads. Both provide access to accelerated GPUs, parallel computing, and 1 PB of parallel file storage and 3 PB archival storage distributed across multiple datacenters. The Farmington facility has 3,000 processor cores, and the Storrs HPC cluster currently has over 11,000 CPU cores on 400 nodes. We maintain a data transfer node with Globus software for large data transfers both within and outside of the environment. Network traffic travels over Ethernet at 10Gb per second between nodes, and file data travels over InfiniBand at 56Gb or 100Gb per second, depending on the node. All UConn researchers may use the community queues, but researchers may purchase semi-dedicated nodes for high priority access. Computational applications, including containers, are installed as needed; to date, over 200 have been made available.